Annex to declaration of accreditation (scope of accreditation) Normative document: EN ISO/IEC 17025:2005 Registration number: **K 127**

of Bronkhorst High-Tech B.V. Bronkhorst Calibration Centre

7261 AK Ruurlo Netherland

This annex is valid from: 24-05-2018 to 30-11-2020

Replaces annex dated: 19-07-2017

Location(s) where activities are performed under accreditation

Head Office				
Nijverheidsstraat 1A 7261 AK Ruurlo Netherland				
Location	Abbreviation/ location code			
Nijverheidsstraat 1A	RU			

HCS code	Measured quantity, Instrument, Measure	Range	CMC ¹	Remarks	Location
FG 1 0	FLOW OF GAS				RU
FG 1 1	Gas volume flow	0.16 ml/min – 0.38 ml/min	0.55%	Mercury Sealed Piston Prover	
		0.38 ml/min – 0.71 ml/min	0.45%	Mercury Sealed Piston Prover	
		0.71 ml/min – 3.5 ml/min	0.40%	Mercury Sealed Piston Prover	
		3.5 ml/min – 16.6 ml/min	0.30%	Mercury Sealed Piston Prover	
		16.6 ml/min – 83.4 ml/min	0.25%	Mercury Sealed Piston Prover	

This annex has been approved by the Board of the Dutch Accreditation Council, on its behalf,

J.A.W.M. de Haas Director of Operations

¹ Calibration and Measurement Capability (CMC): Demonstrated measurement uncertainty, with coverage probability of 95%, in a given measurement point or measurement range. Measurement uncertainty, *U*, is calculated according to EA-4/02 "*Evaluation* of the Uncertainty of Measurement in Calibration".

Annex to declaration of accreditation (scope of accreditation) Normative document: EN ISO/IEC 17025:2005 Registration number: **K 127**

of Bronkhorst High-Tech B.V. Bronkhorst Calibration Centre

This annex is valid from: 24-05-2018 to 30-11-2020

Replaces annex dated: 19-07-2017

HCS code	Measured quantity, Instrument, Measure	Range	CMC ¹	Remarks	Location
FG 1 1	Gas volume flow	83.4 ml/min – 22.5 l/min	0.25%	Mercury Sealed Piston Prover	
		22.5 l/min – 6645 l/min	0.25%	(Dual) Rotary Meter	
FG 1 1	Gas mass flow	0.15 ml₀/min – 0.35 ml₀/min	0.55%	Mercury Sealed Piston Prover	
		0.35 ml₅/min – 0.66 ml₅/min	0.45%	Mercury Sealed Piston Prover	
		0.66 ml₀/min – 3.3 ml₀/min	0.40%	Mercury Sealed Piston Prover	
		3.3 ml₀/min – 15.5 ml₀/min	0.30%	Mercury Sealed Piston Prover	
		15.5 ml _n /min – 77.5 ml _n /min	0.25%	Mercury Sealed Piston Prover	
		77.5 ml₀/min – 21 l₀/min	0.25%	Mercury Sealed Piston Prover	
		21 ln/min – 6202 ln/min	0.25%	(Dual) Rotary Meter	
FL 1 0	FLOW OF LIQUIDS				RU
FL 1 1	Liquid flow rate	1 – 2 g/h	0.65%	Balance	
		2 – 10 g/h	0.35%	Balance	
		10 – 200 g/h	0.10%	Balance	
		200 g/h – 30 kg/h	0.10%	Balance	

Annex to declaration of accreditation (scope of accreditation) Normative document: EN ISO/IEC 17025:2005 Registration number: **K 127**

of Bronkhorst High-Tech B.V. Bronkhorst Calibration Centre

This annex is valid from: 24-05-2018 to 30-11-2020

Replaces annex dated: 19-07-2017

HCS code	Measured quantity, Instrument, Measure	Range	CMC ¹	Remarks	Location
PV 0 0	PRESSURE AND VACUUM				RU
PV 1 1	Absolute gas pressure	(0.025 – 0.8) bar	40 Pa	Pressure Calibrator	
		(0.8 – 400) bar	5·10 ⁻⁴ · <i>p</i>	Pressure Calibrator	
PV 1 2	Over atmospheric gas pressure	(0 – 400) bar	5·10 ^{-4.} pe	Pressure Calibrator	

Remarks:

The ambient temperature and humidity during calibration is: 21 °C ± 2 °C and 50 %rh± 20 %rh resp.

Calibration gases:

For Piston prover: Compressed dry Air, Ar, N_2 , CO_2 , H_2 or He; other gases on request For Rotary meter: Compressed dry Air only

The flow units ml_n/min and l_n/min refer to gases under normal (n) conditions of 273.15 K and 101325 Pa.

Fixed normal densities $\rho_n [kg/m^3]$ are used to convert from the flow unit $[l_n/min]$ to the mass flow unit [g/h], using the equation:

$$\Phi_m \left[\frac{g}{h} \right] = \Phi_m \left[\frac{I_n}{\min.} \right] \cdot \rho_n \left[\frac{kg}{m^3} \right] \cdot 60$$

For example:

Gas	Normal density [kg/m3]	Equivalent [g/h] to 1 [In/min]:
Compressed dry air (AiR)	1.293	77.58
Argon (Ar)	1.784	107.0
Nitrogen (N2)	1.250	75.02
Carbon dioxide (CO2)	1.977	118.6
Hydrogen (H2)	0.08991	5.395
Helium (He)	0.1785	10.71

This way, any flow of any gas in [l_n/min] can be converted into mass flow in [g/h].